
From our previous work, the best 
batch size decreases with UTD.

From TD-overfitting, the best batch 
size increases with model size.

Combining these independently 
(empirically good enough):
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RL is sensitive to hyperparameters. How to set batch size 
for large-scale runs?

To achieve performance level J, RL requires a combination 
of data       and compute     . What is their tradeoff?

I have a requirement on the total budget, a combination 
                                    of data and compute. What algorithm 
configuration maximizes performance given this budget?

Q1:

Q2:

Q3:

Motivation and Problem Statement

Our previous work found the best batch size should decrease with the updates-to-data ratio (UTD; 
gradient steps per batch) to counteract overfitting effects. What if we fix UTD and vary model size?
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This discrepancy is due to poor generalization of 
TD-targets produced by smaller models.

Idea: Train a “passive critic” alongside the main 
critic that regresses to TD-targets. This decouples 
the main critic’s capacity from TD-target quality.

Validation TD-error under the passive critic is more 
effectively reduced by improving TD-targets!
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Small model, small batch Small model, large batch

Large model, large batchLarge model, small batch

Q1: What is the best batch size?

With the right batch size, data and compute are predictable functions of UTD and model size.

Q3  The required precision in budget-optimal 
UTD and model size varies across tasks.

Q2  Optimal compute and data follow power 
laws in the combined budget     .

Q2, Q3: Configuring Algorithm

Training TD-error improves with batch size. 
For small models, val worsens with batch size. 
For large models, val improves with batch size.
Why does this happen?

Compute-Optimal Scaling for Value-Based Deep RL

TD-overfitting: Small models benefit from smaller 
batch sizes, which result in noisy gradient updates. 
Large models produce high-quality TD-targets and 
can benefit from low-variance updates.

Q0: How does model size modulate batch size?


