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Ql:

for large-scale runs?

Q2:

Motivation and Problem Statement

RL is sensitive to hyperparameters. How to set batch size

To achieve performance level J, RL requires a combination

of data D and compute C. What is their tradeoff?

Q3:

| have a requirement on the total budget, a combination
F = C + 0 - D of data and compute. What algorithm
configuration maximizes performance given this budget?
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------------ Q0: How does model size modulate batch size?

Our previous work found the best batch size should decrease with the updates-to-data ratio (UTD;
gradient steps per batch) to counteract overfitting effects. What if we fix UTD and vary model size?
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Training TD-error improves with batch size.
For small models, val worsens with batch size.

For large models, val improves with batch size.

Why does this happen?

This discrepancy is due to poor generalization of
TD-targets produced by smaller models.

Idea: Train a “passive critic” alongside the main
critic that regresses to TD-targets. This decouples
the main critic’s capacity from TD-target quality.
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Val loss w/ Passive Critic

Average Slope: -0.55
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Average Slope: -0.33
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Validation TD-error under the passive critic is more
effectively reduced by improving TD-targets!

TD-overfitting: Small models benefit from smaller
batch sizes, which result in noisy gradient updates.
Large models produce high-quality TD-targets and
can benefit from low-variance updates.
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——————————— Q1l: What is the best batch size?

From our previous work, the best  g20
batch size decreases with UTD. g =
From TD-overfitting, the best batch 2
size increases with model size.
Combining these independently g~
(empirically good enough): :
o 1 .
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............ Q2, Q3: Configuring Algorithm

With the right batch size, data and compute are predictable functions of UTD and model size.
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Q2 Optimal compute and data follow power
laws in the combined budget JF-.
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Q3 The required precision in budget-optimal
UTD and model size varies across tasks.
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